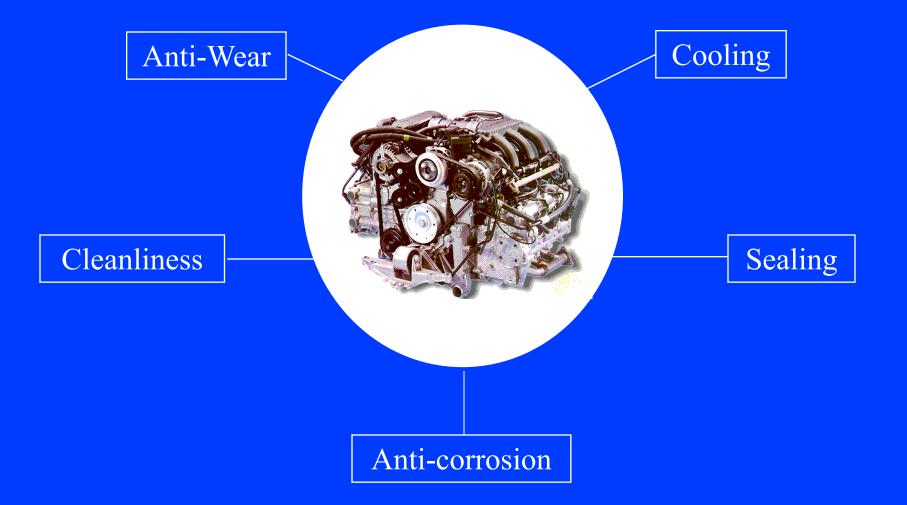


Fundamentals of Lubrication

Lubricants

Summary


The Role of the Lubricant Lubricant Composition and Use Functions of Engine Lubricants Lubricant Properties

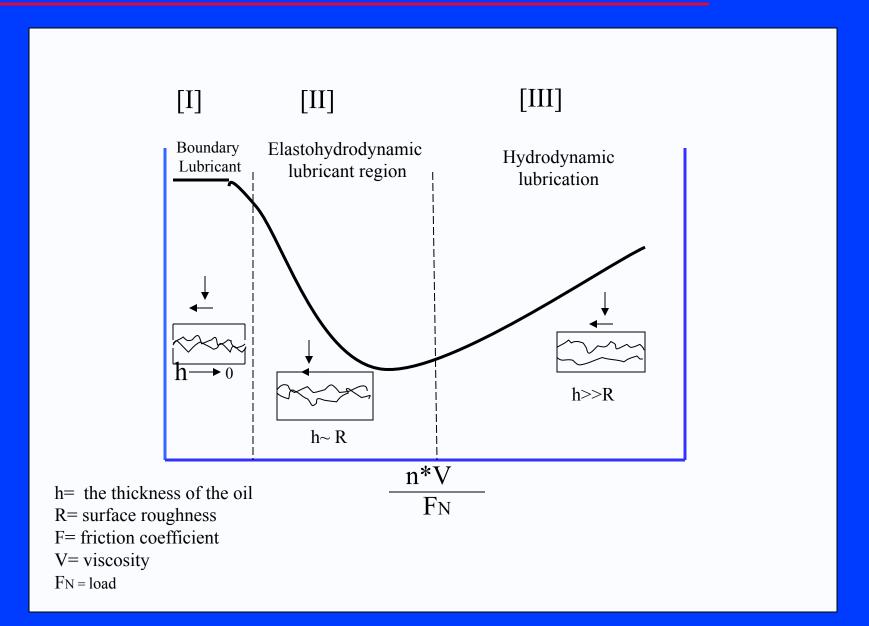
- Physical/Chemical
- Service Behavior
- Classifications

Most principles discussed in this presentation apply to other lubrication applications such as industrial oils, gear oils, etc.

Engine Lubricants

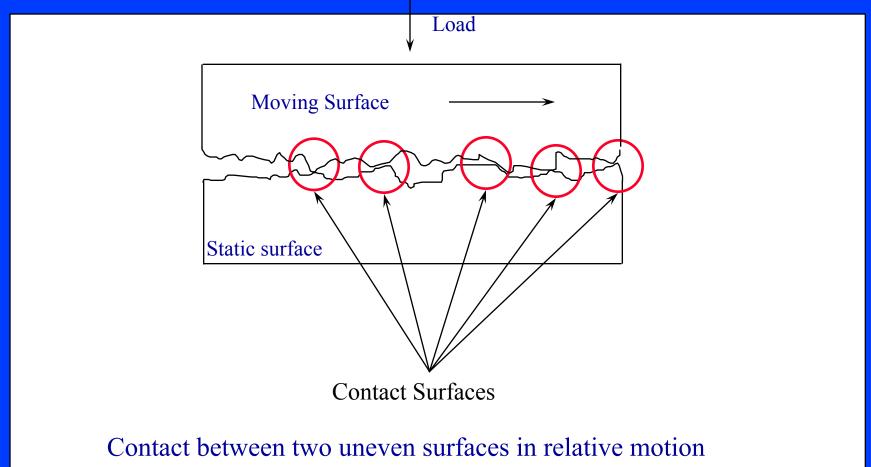
Engine Oil Functions

The Function of Lubricants and Lubrication


Lubrication

- Separates surfaces in contact
- Reduces friction
- Reduces wear
- Prevents scuffing and galling

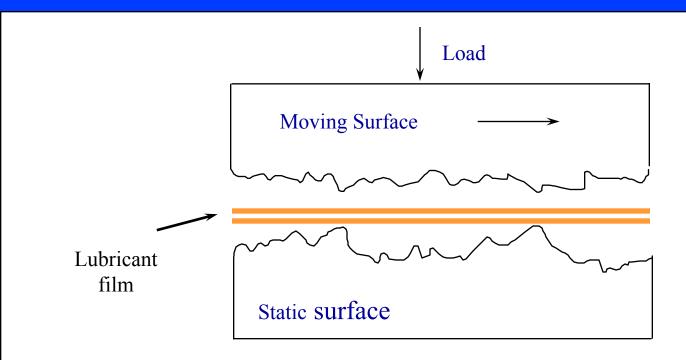
Other functions


- Cooling
- Corrosion protection
- Prevents contaminants from entering into sensitive system
- Cleaning
- Power transmission (traction drive)

Stribeck curve and lubrication regions

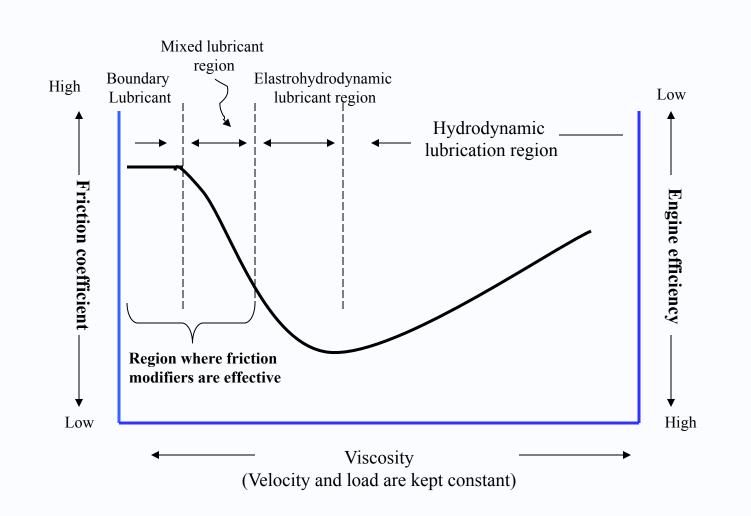
Lubricants

Friction


generates microwelding and wear

Friction

- Caused by relative motion between surfaces
- Heat generation = lube instability = surface damage
- Types of Friction:
 - -Static
 - Can cause "stick-slip "
 - -Sliding
 - "Classic" friction
 - -Rolling
 - Lower friction than rolling

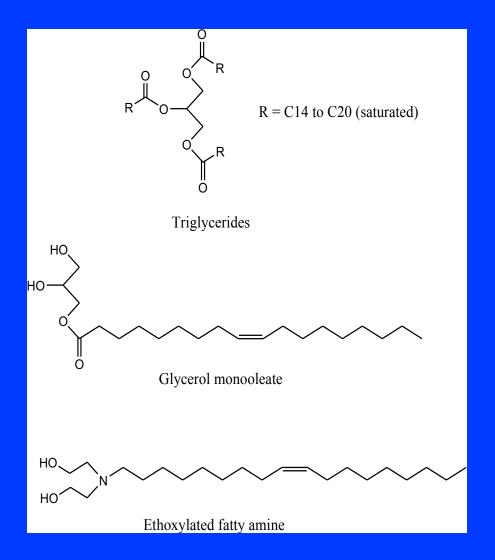

Lubricants

Friction

Oil film thickness greater than surface microtexture

Relationship between Stribeck curve and friction modification

What Are Friction Modifiers?


Surface active chemicals that affect friction coefficient under boundary lubrication conditions

Almost all chemicals fit this broad definition

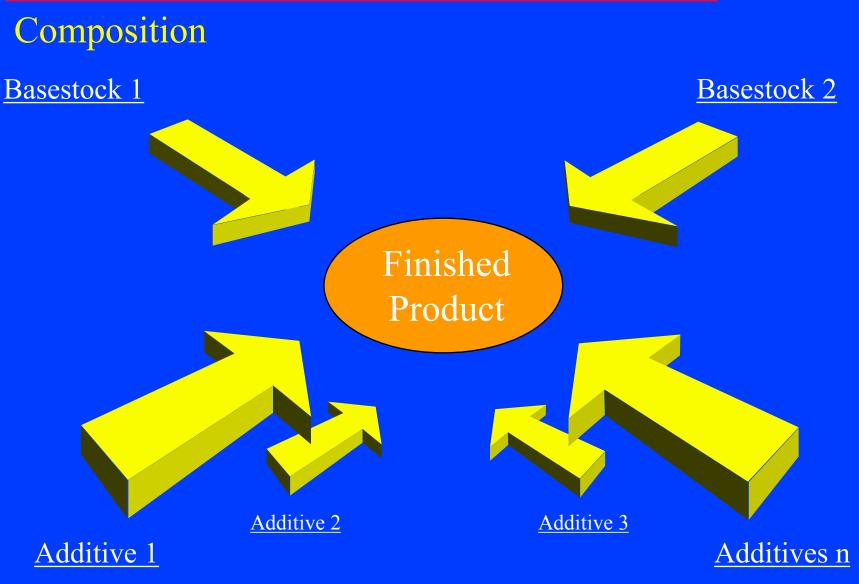
For our purposes:

Chemicals that, when added to a lubricating oil at a concentration less than 1%, significantly affect the coefficient of friction e.g. glycerol mono-oleate (GMO)

Organic friction modifiers

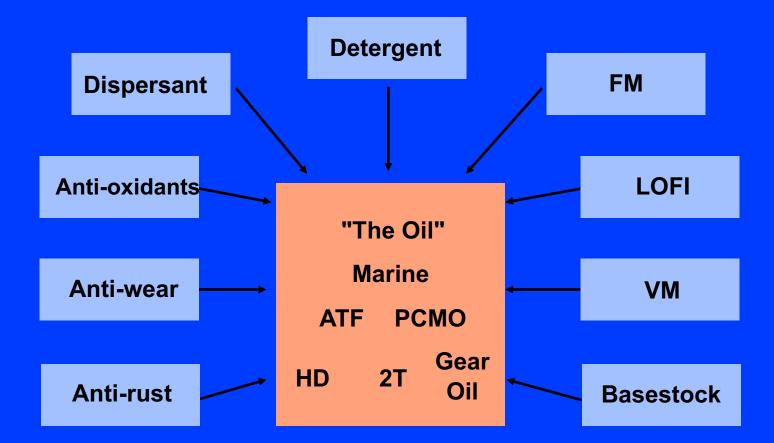
Lubricants

Composition


Basestocks used in engine lubricants can be:

- Mineral oil based
- Synthetics
- Semi-Synthetics

Additives are divided in 3 main types:


- Surface protection additives
- Performance additives
- Oil protection additives

Lubricants

 The Key is Balancing the Additives for the Application

Formulation Science

Group I

Mineral Oil Basestocks

Obtained from crude by distillation

Refined using historical techniques

- solvent extraction
- solvent dewaxing
- hydrofining to reduce sulfur content

Removal of:

- Asphalt
- Light Paraffin's
- Wax
- Other undesirable components

It's an imperfect process, because a variety of different sized molecules are obtained.

API Group	Sats,%	Sulfur.%	VI	Typical Manufacturing Process
Ι	<90	>0.03	80-119	Solvent Processing

Group II

Mineral Oil Basestocks

Obtained by various processes

Mildly hydrocracked mineral oils

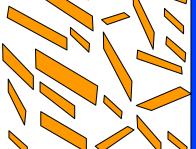
- solvent extraction
- solvent dewaxing
- more hydrofining to further reduce sulfur content
- saturation of some aromatics and olefins

API Group	Sats,%	Sulfur.%	VI	Typical Manufacturing Process
Ι	<90	>0.03	80-119	Solvent Processing
II	>90	<0.03	80-119	Hydroprocessing

Group III

Mineral Oil Basestocks

Obtained by various processes


Severely hydrotreated mineral oils

• Saturation of almost all aromatics and olefins.

API Group	Sats,%	Sulfur.%	VI	Typical Manufacturing Process
Ι	<90	>0.03	80-119	Solvent Processing
II	>90	< 0.03	80-119	Hydroprocessing
III	>90	<0.03	120+	Wax Isomerization, H.C, GTL

Group IV <u>Polyalphaolefins (PAO)</u> (SpectraSyn, SpectraSyn Plus, SpectraSyn Ultra)

Synthetic	Mineral Oil
Pure compounds (no wax or impurities)	Complex mixtures
Tailored properties	Compromise among properties
SpectraSyn Synthetic Molecular Structures	Mineral Oil Molecular Structures

Groups V and VI

Group V *

All other basestocks not meeting Group I - IV definitions i.e. esters (Esterex), alkylated naphthalene (Synesstic) polyalkylene glycols, polyethers etc

<u>Group VI</u>

PolyInternalOlefins (PIO) - Europe Only

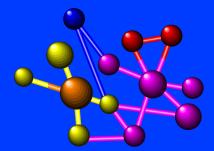
API Group	Sats, %	Sulfur,%	VI	Typical manufacturing Process
Ι	<90	>0.03	80-119	Solvent Processing
II	>90	< 0.03	80-119	Hydroprocessing
III	>90	< 0.03	120+	Wax Isomerization, H.C, GTL
IV	n.a	n.a		Polyalphaolefins (PAO)
V				All Other Basestocks

* Excellent reference "Synthetics, Mineral Oils, and Bio-Based Lubricants" L.R. Rudnick, Ed., CRC Press, 2004

Definition of a Synthetic Basestock

Others

Group III basestocks are considered synthetic and manufactured by hydrocracking and isomerizing slack wax. They generally have more than or equal to 120 VI with more than or equal to 90% saturates and less than or equal to 0.03% sulfur.


ExxonMobil

Synthetic lubricants are manufactured in chemical plants by reacting components and are specifically designed to possess physical and performance characteristics that are superior to mineral oils. As a result, the molecular structure of synthetic lubricants can be precisely arranged to meet, and often exceed, manufacturers' criteria for high-performance equipment.


Lubricants

Synthetic Basestocks

Derived from molecules which yield basestocks with high purity and excellent stability

Synthetic basestocks have excellent service behavior and are free from the many mineral oil constraints.

New Specifications Make Synthetics Popular

- New engine oil specification
 - API SM / ILSAC-GF4 (USA)
 - ACEA 2004 (EU)
 - Emission reduction
 - Fuel economy
 - Marketing of premium brands
 - Require tailor- made lubricants in total or blended with mineral oils to meet tighter specifications.

Additives

Surface Protection Additives

- Anti-Wear and EP agents
- Corrosion and rust inhibitors
- Detergents
- Dispersants
- Friction modifiers

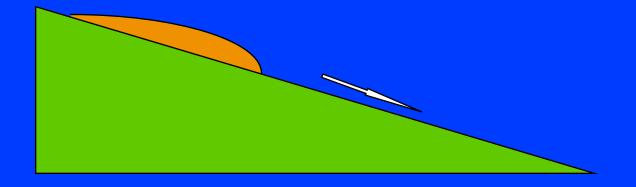
Performance Additives

- Pour point depressants
- Seal-swell controllers
- Viscosity modifiers

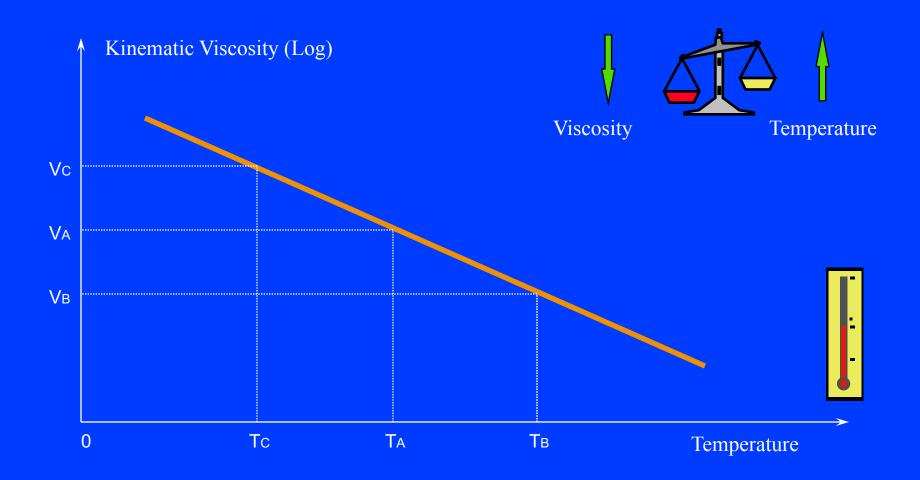
Oil Protection Additives

- Anti-foam
- Anti-oxidants
- Metal de-activators
- Demulsifiers

Lubricant Characteristics


- Viscosity
- Viscosity Index
- Low temperature fluidity
- Flash point
- Oxidation stability
- Thermal stability
- Detergency
- Dispersancy
- Alkalinity
- Anti-Wear
- Anti-Rust and Anti-Corrosion
- Ash content

Lubricant Characteristics


- Viscosity
- Viscosity Index
- Low temperature fluidity
- Flash point
- Oxidation stability
- Thermal stability
- Detergency
- Dispersancy
- Alkalinity
- Anti-Wear
- Anti-Rust and Anti-Corrosion
- Ash content

What is Viscosity?

Viscosity: Measure of a fluid's internal resistance to flow at a given temperature

Viscosity Is a Function of Temperature

Viscosity Units

Viscosity Types

Kinematic: expressed in Stoke (St) or Centistoke (cSt)
 $(1 \text{ cSt} = 0.01 \text{ St} = 1 \text{ mm}^2/\text{s})$ Dynamic Viscosity = Density x Kinematic ViscosityDynamic: expressed in Poise (P) or Centipoise (cP)
cP = 0.01 P = 1 mPas)

Other Viscosity Units

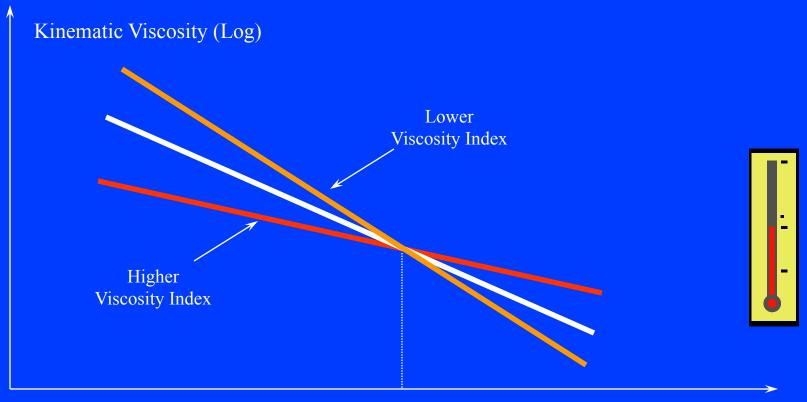
S.S.U.	: American unit

Redwood : British unit

SAE : Engine Oil Viscosity Classification

Making the right choice for oil viscosity

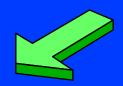
If Viscosity is too	May result in
Low	Increased wear
Low	Increased oil consumption
Low	Increased oil leaks and noise
High	Increased operating temperature and reduced output power and poorer fuel economy


Correct basestock Grade will yield better cold starting, reduce metallic wear, oil consumption and power losses by fluid friction, as well as reduced deposit formation and oil leaks in sealed joints

Lubricant Characteristics

- Viscosity
- Viscosity Index
- Low temperature fluidity
- Flash point
- Oxidation stability
- Thermal stability
- Detergency
- Dispersancy
- Alkalinity
- Anti-Wear
- Anti-Rust and Anti-Corrosion
- Ash content

Measures the change in viscosity of a fluid with a change in temperature



Temperature

Viscosity Index

Lubricant with high V.I. guarantees

This means:

- Prevention against wear (higher viscosity at high temp)
- Low oil consumption
- Better oil flow at lower temperatures (lower viscosity at low temp)

	Physical F	Requirements for	Engine Oils: SA	AE J300 '	Table	
	SAE	Cranking (cP) max at	Pumping (cP) max.	Kinematic	· · · · · · · · · · · · · · · · · · ·	High Shear
	Viscosity	temperature °C,	With no yield stress	(cSt) at ?	100 °C	Rate (cP) @
	Grade	measured in CCS	at temperature (°C)			150 º C min
				Mín	Max	
	0144					
	0W	6200 @-35 °C	60,000 @ -40 °C	3.8	-	-
	5W	6600 @-30 °C	60,000 @ -35 °C	3.8	-	-
	10W	7000 @-25 °C	60,000 @ -30 °C	4.1	-	-
	15W	7000 @-20 °C	60,000 @ -25 °C	5.6	-	-
	20W	9500 @-15 °C	60,000 @ -20 °C	5.6	-	-
	25W	13,000 @-10 °C	60,000 @ -15 °C	9.3	-	-
	20	-	-	5.6	<9.3	2.6
	30	-	-	9.3	<12.5	2.9
	40	-	-	12.5	<16.3	2.9(1)
	40	-	-	12.5	<16.3	3.7(2)
	50	_	_	16.3	<21.9	3.7
	60	-		21.9	<26.1	3.7
-		(1) 0W-40,5W-40, 10W-40 grades	(2) 15W-40, 20W40, 25W-40, 40 grades			

Viscosity

Flexibility of multigrades; Example

Viscosity

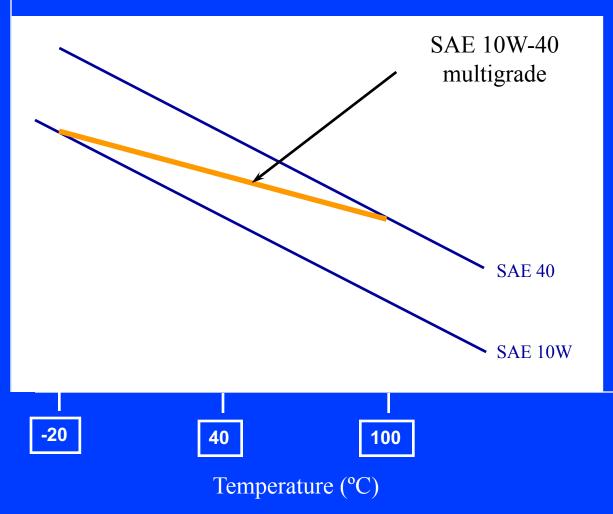


Chart shows Visc. / Temp. characteristics for two monogrades.

The multigrade has the SAE 40 properties at high temperatures and the low temperature properties of a SAE 10W

Viscosity Classification for Industrial Oils

ISO Viscosity Classification					
ISO Viscosity Grade (ISO VG)	Kinematic Viscosity cSt @ 40°C (104°F) midpoint	Kinematic Viscosity Limit cSt @40°C (104°F) minimum	Kinematic Viscosity Limit cSt @40°C (104°F) maximum		
2	2.2	1.98	2.42		
3	3.2	2.88	3.52		
5	4.6	4.14	5.06		
7	6.8	6.12	7.48		
10	10	9.00	11.0		
15	15	13.5	16.5		
22	22	19.8	24.2		
32	32	28.8	35.2		
46	46	41.4	50.6		
68	68	61.2	74.8		
100	100	90.0	110		
150	150	135	165		
220	220	198	242		
320	320	288	352		
460	460	414	506		
680	680	612	748		
1000	1000	900	1100		
1500	1500	1350	1650		
2200	2200	1980	2420		
3200	3200	2880	3520		

1 cSt = 1 mm²/s

Lubricant Characteristics

- Viscosity
- Viscosity Index

- Low temperature fluidity
- Flash point
- Oxidation stability
- Thermal stability
- Detergency
- Dispersancy
- Alkalinity
- Anti-Wear
- Anti-Rust and Anti-Corrosion
- Ash content

Low Temperature Fluidity

Guarantees immediate oil flow to the engine moving parts at low temperatures

Minimum pumping temperature:

Proper lubrication at low temperatures is critical for engine life. The lower the temperature an oil can flow through the oil pump, the better the engine is protected.

 Synthetics have much better low temperature fluidity than mineral based oils; do not contain wax.

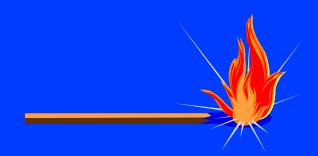
- Viscosity
- Viscosity Index
- Low temperature fluidity
- Flash point
 - Oxidation stability
 - Thermal stability
 - Detergency
 - Dispersancy
 - Alkalinity
 - Anti-Wear
 - Anti-Rust and Anti-Corrosion
 - Ash content

Temperature at which vapor from a heated oil **ignites** when exposed to a naked flame.

Important indicator of the fire and explosion hazards associated with petroleum products.

Gives information about volatility, measure of an engine oil's tendency to evaporate at high engine temperatures.

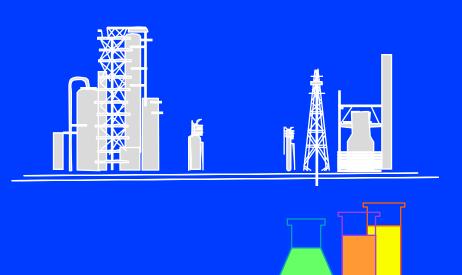
-23


- Viscosity
- Viscosity Index
- Low temperature fluidity
- Flash point
- Oxidation stability
- Thermal stability
- Detergency
- Dispersancy
- Alkalinity
- Anti-Wear
- Anti-Rust and Anti-Corrosion
- Ash content

Oxidation occurs when oxygen attacks petroleum fluids.

The process is accelerated by heat, light, metal catalysts and the presence of water, acids, or solid contaminants.

Oxidation leads to:


- Increased viscosity
- Deposit formation
- Bearing corrosion
- Increased acid number

Oxidation Stability

Oxidation resistance of a lubricant depends on:

Base Oil Quality

Careful selection of Additives.....

Oxidation Inhibitors

Functions:

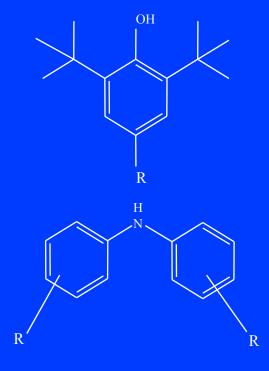
Reduce lubricant oxidation Viscosity increase Acid Insolubles

Reduce varnish formation

- Caused by insolubles

Reduce Cu/Pb bearing corrosion - Caused by acids

Oxidation Inhibitors


Types and Typical Compositions

Chain stopping (Radical Traps) $R \bullet + InH \rightarrow RH + In \bullet$ InH = inhibitor $In \bullet = low energy$ inhibitor radical

Hindered Phenols Alkylated DiPhenyl Amines (DPA) Salicylates (Some) transition metals (Cu, Mo)

Peroxide DecomposersROOH + InH \rightarrow RH + $H_2\Theta$ + In

- Zinc Dialkyl Dithiophosphate (ZDDP)
- (Some) sulphur compounds

Oxidation Stability

Engine constraints requiring an increased oxidation stability:

- Higher specific output power
- Lower capacity oil sumps
- Extended oil drain intervals
- Higher working temperatures

- Viscosity
- Viscosity Index
- Low temperature fluidity
- Flash point
- Oxidation stability
 - Thermal stability
- Detergency
- Dispersancy
- Alkalinity
- Anti-Wear
- Anti-Rust and Anti-Corrosion
- Ash content

Resistance of a lubricant to decompose, under high operating temperatures.

Depends on the basestock used

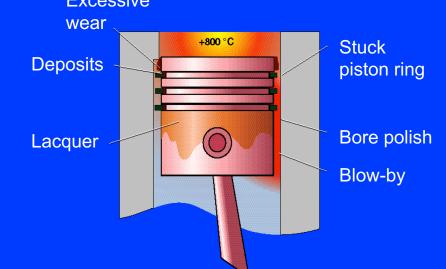
Is not usually improved with additives

- Viscosity
- Viscosity Index
- Low temperature fluidity
- Flash point
- Oxidation stability
- Thermal stability

- Detergency
- Dispersancy
- Alkalinity
- Anti-Wear
- Anti-Rust and Anti-Corrosion
- Ash content

Definition

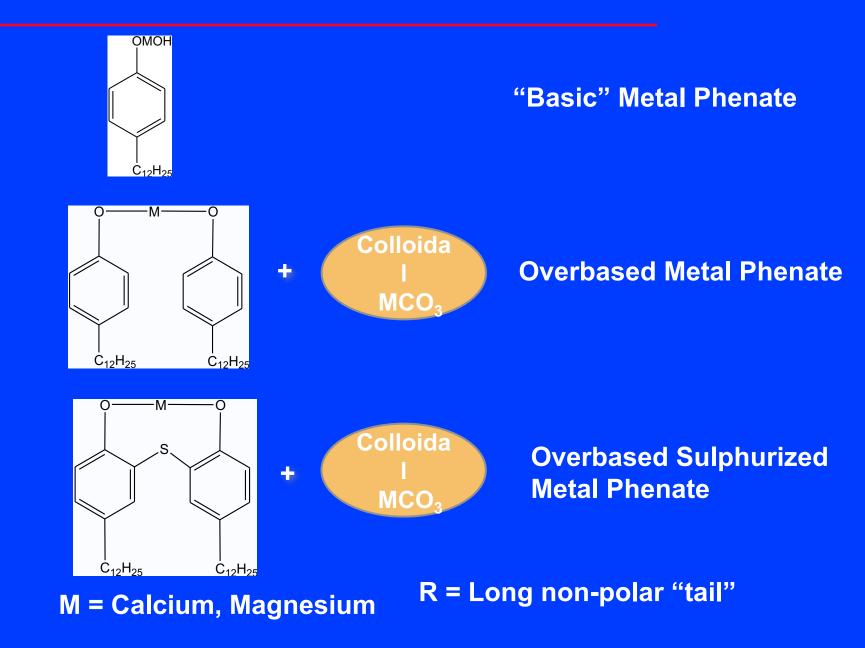
Property of a lubricant enabling it to neutralize the chemical substances that can lead to deposit formation on engine parts. These substances are formed by fuel combustion at high temperature or as a result of burning fuels with high sulfur content.

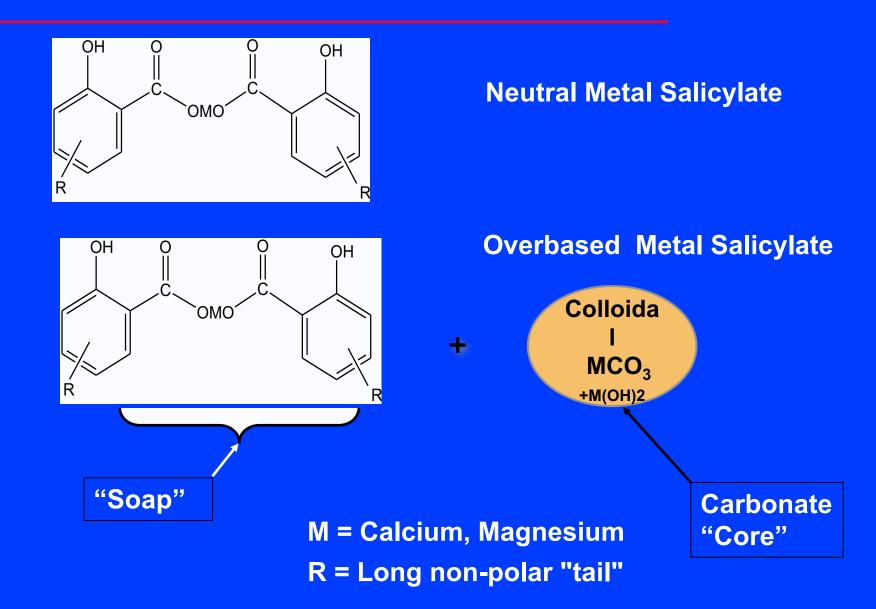

Metal Detergents

Neutralise acidic blow-by gases

- prevent corrosive wear
- Reduce lacquer, carbon and varnish deposits on pistons

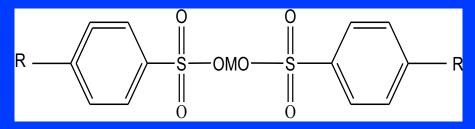
Prevent ring sticking under severe

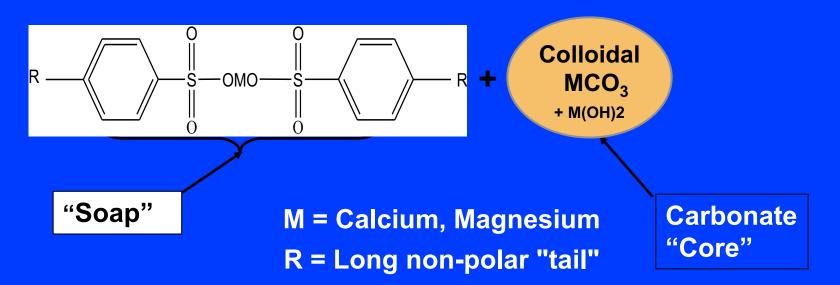

high-temperature operating conditions


Deposit formation in the piston assembly

Typical additive compositions are

Phenates





Sulphonates

Neutral Metal Sulphonate

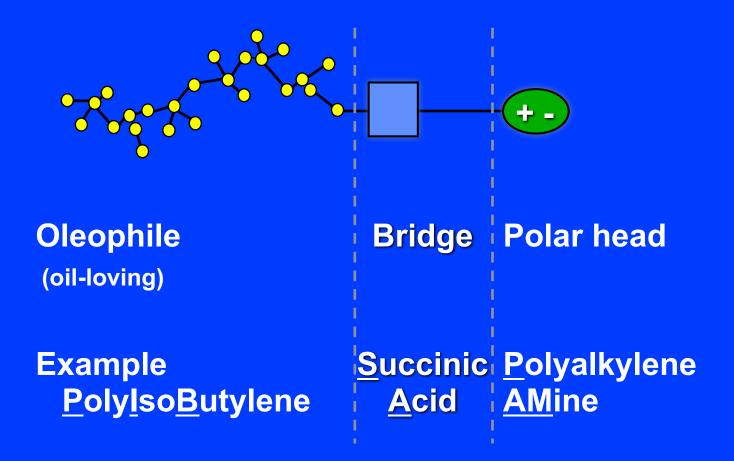
Overbased Metal Sulphonate

- Viscosity
- Viscosity Index
- Low temperature fluidity
- Flash point
- Oxidation stability
- Thermal stability
- Detergency

- Dispersancy
- Alkalinity
- Anti-Wear
- Anti-Rust and Anti-Corrosion
- Ash content

Dispersancy

Dispersant Additives


These engine oil additives help prevent sludge, varnish and other deposits, avoiding carbonaceous residues joined together forming bigger deposits in engine parts.

Usually they are non-metallic and generally used in combination with detergents.

Disperse sludge and varnish which have a strong adhesion to metallic surfaces and are very difficult to remove.

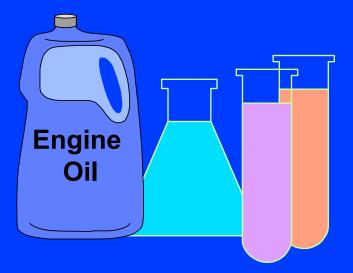
Keep things clean Engine oil is rubbish collector Engine oil is rubbish dump


Dispersants

Detergent Additives and Dispersant Additives

Reduce and delay engine deposit formation

- Viscosity
- Viscosity Index
- Low temperature fluidity
- Flash point
- Oxidation stability
- Thermal stability
- Detergency
- Dispersancy



- Alkalinity
- Anti-Wear
- Anti-Rust and Anti-Corrosion
- Ash content

Definition

Lubricant's ability to neutralize the acidic end products of fuel combustion and oil oxidation.

Most detergent additives, and to a lesser extent many dispersant additives, have a significant basic characteristic.

The lubricant's content of alkaline components is given by TBN (Total Base Number).

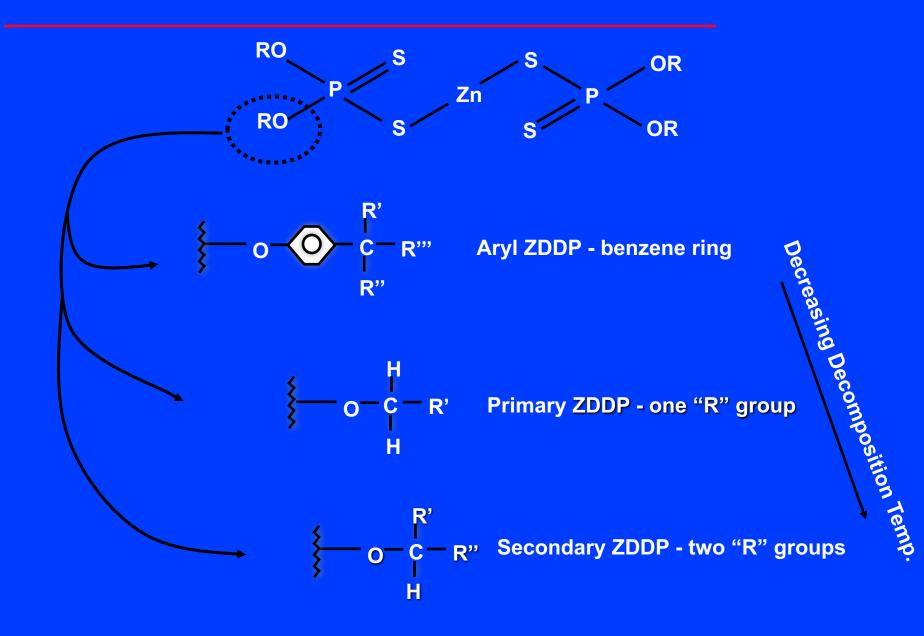
The alkalinity reserve of an oil (TBN) is consumed during normal engine working service and is due to the neutralization of strong acids from fuel combustion.

- Viscosity
- Viscosity Index
- Low temperature fluidity
- Flash point
- Oxidation stability
- Thermal stability
- Detergency
- Dispersancy
- Alkalinity
- **•** Anti-Wear
 - Anti-Rust and Anti-Corrosion
 - Ash content

Anti-Wear

Definition

Lubricant's capacity to prevent or reduce wear on highly loaded parts when it is not possible to guarantee hydrodynamic lubrication conditions.



Anti-Wear Agents

Function Reduce metal-metal wear

Types Zinc-containing Ashless phosphorus based (mainly ATF's) Extreme pressure Gear oils

Zinc Dialkyl DithioPhosphate (ZDDP)

- Viscosity
- Viscosity Index
- Low temperature fluidity
- Flash point
- Oxidation stability
- Thermal stability
- Detergency
- Dispersancy
- Alkalinity
- Anti-Wear

- Anti-Rust and Anti-Corrosion
- Ash content

Anti-Rust and Anti-Corrosion

Causes

Rust:

Chemical attack of the metallic surfaces due to humidity and water condensation.Effective additives for control of rust are Metal sulphonates, Ethoxylated phenol, Alkenyl succinic acid and Imidazoline derivatives

Corrosion:

Chemical attack of the surfaces by organic acids from fuel combustion, oxidation and contaminants. Effective additives are Alkyl thiadiazoles

- Viscosity
- Viscosity Index
- Low temperature fluidity
- Flash point
- Oxidation stability
- Thermal stability
- Detergency
- Dispersancy
- Alkalinity
- Anti-Wear
- Anti-Rust and Anti-Corrosion

Ash content

Ash Content

Ash:

Metallic deposits formed in the combustion chamber and other engine parts, during high temperature operation.

High levels give:

- Combustion chamber deposits
- Ring wear

Due to their metallic composition, high contents of detergent additives in the oil leave a slight ash when the oil is burned. The dispersants, being non-metallic additives, do not contribute to ash level increase when the oil is burned.

Lubricant Characteristics Summary

Characteristics	Engine	Transmission Differential	Wet Brake/PTO Clutch	Hydraulics
High temp. viscosity	++	+	+	+
Low temp. Fluidity	+			++
Detergency/dispersancy	++			
Oxidation/thermal	++		+	++
stability				+
Load carrying/anti-wear	+	++		+
Rust/corrosion	+	+		
prevention				
Water tolerance				++
Seal compatibility	+	+	+	+
Anti foam	+	+		+
Correct frictional req.			++	
Anti foam	+	+		

Synthetic lubricants are developed to greatly surpass the toughest requirements of the modern automotive and industrial equipment.

ExxonMobil is a pioneer in the development of Synthetic Lubricant technology, continuously developing and marketing synthetic products world-wide recognized as the market references. 'Fluids made by chemically reacting materials of specific chemical composition to produce compounds with planned and predictable properties'

Synthetic lubricants are used with the following objectives:

 \checkmark To protect the equipment in severe operating conditions

- Constant operation close to the design limits
- Demanding mechanical and thermal loads
- Adverse environmental conditions

 \checkmark To optimize the use of the equipment

- Longer oil drain periods; less downtimes
- Lower maintenance costs

Advantages

High viscosity index; adequate oil film maintained at all temperatures Exceptional oxidation stability Remarkable low temperature fluidity Excellent levels of detergency and dispersancy High chemical and thermal stability Fuel economy benefits Thank You